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A spectral collocation multi-domain scheme is developed for the accurate and
efficient time-domain solution of Maxwell’s equations within multi-layered diffrac-
tive optical elements. Special attention is being paid to the modeling of out-of-plane
waveguide couplers. Emphasis is given to the proper construction of high-order
schemes with the ability to handle very general problems of considerable geometric
and material complexity. Central questions regarding efficient absorbing boundary
conditions and time-stepping issues are also addressed. The efficacy of the overall
scheme for the time-domain modeling of electrically large, and computationally chal-
lenging, problems is illustrated by solving a number of plane as well as non-plane
waveguide problems. c© 1999 Academic Press
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1. INTRODUCTION

Diffractive optical elements (DOEs) comprising surface-relief gratings on thin film op-
tical waveguides have become increasingly interesting for sensor applications as the fabri-
cation technology for such devices has matured [22, 11].

A remaining challenge in the design of DOEs is to specify a surface-relief grating which
will produce a desired free-space farfield pattern. A first step in this inverse design process
is to solve the forward problem, i.e., to accurately determine the field pattern from a given
relief profile. To that end analytic tools are not an option as they are limited to treating
periodic structures of infinite extent. What is needed is a tool that allows for the analysis of
devices of finite length with chirped, hence aperiodic, surface reliefs.

An alternative to analytic methods is low-order numerical methods such as the finite
difference time-domain method (FD-TD). While this approach is fairly straightforward it
will in many cases lead to inaccurate results due to the inability to correctly reproduce the
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phase behaviour of the waves [21]. A FD-TD study by Dridi and Bjarklev [6] indicates
that a resolution of more than 40 points per wavelength is needed in the analysis of a
10λ long grating coupler using a second-order scheme. Even with a very high resolution,
i.e., many points per wavelength, low-order methods will fail to model the phase velocity
of the electromagnetic field correctly and, as the DOEs in concern will typically be hun-
dreds of wavelengths long and their functionality critically dependent on the phase of the
waves, such phase errors will lead to incorrect results for the fields coupled to free-space.
Moreover, to accurately model the details of the interaction between the incoming guided
wave and the modulated surface relief, a very accurate description of the relief is required.
In the FD-TD method, interfaces are traditionally approximated through a staircase ap-
proximation which, in the present case, results in very severe restrictions on the accuracy
of the method unless an unrealistic number of grid points are used which, on the other
hand, results in very significant memory requirements hence limiting the electric size of the
problem.

The need to accurately model the phase behaviour in electrically large structures thus
suggests that higher-order methods should be considered. Indeed, as has recently been
shown, this is not only an option but a necessity for problems involving electromagnetic
scattering by electrically large objects [23].

In this paper, we develop a spectral collocation multi-domain scheme suitable for the
modeling of general guided wave problems with an emphasis being put on out-of-plane
waveguide couplers as sketched in Fig. 1. The scheme employs a multi-domain Chebyshev
collocation method in combination with a curvilinear representation and a smooth mapping,
hence providing the necessary geometric flexibility of the computational setting. However,
the multi-domain framework not only ensures the geometric flexibility of the scheme but also
eases the computational burden associated with traditional one-domain collocation methods
while supplying a very natural data-decomposition suitable for efficient implementations
on a parallel platform.

The remainder of this paper is organized as follows. In Section 2, the physical picture
and Maxwell’s equations are outlined. Section 3 discusses the elements of the numerical
scheme employed and the performance of the complete framework is addressed in Section 4
through a number of test cases. Concluding remarks are finally given in Section 5.

FIG. 1. Typical configuration of a multi-layer diffractive optical element.
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2. THE PHYSICAL PICTURE

Although the computational framework developed here is applicable for the modeling
of a variety of waveguide phenomena, we shall focus the attention on waveguide grating
couplers, i.e., elements in which the electromagnetic energy may be exchanged between
guided waves and free space. The forward scattering problem, as shown in Fig. 1, is the
subject of main interest here. The modulation of the element/free-space interface manipu-
lates the guided wave and allows for a coupling of waveguide energy into free-space. The
actual amplitude and phase modification of the scattered fields depends critically on the
details of the modulation of the waveguide surface, hence placing severe constraints on
the properties of the numerical scheme.

A typical waveguide grating coupler consists of a number of layers of dielectric material
and we shall subsequently assume that all materials can be considered lossless, homoge-
neous, and non-magnetic. For the guided wave to exist we must assume that the refractive
indices of the cladding and the substrate,n1, andn3, respectively, must be lower than the
refractive index of the core,n2. The width of the waveguide core,d2, determines whether
the waveguide is a single- or a multi-mode waveguide while the width of the cladding,d1,
is directly related to the amount of coupling between the waveguide and free-space. The
width, d3, of the bulk material with refractive indexn3 is assumed to be sufficiently large
that the evanescent waves are undisturbed by the lower edge of the element.

We shall restrict our attention to the two-dimensional transverse electrical (TE) case with
the dynamics of the fields being described by Maxwell’s equations in the form

∂ H̃ z

∂ t̃
= − c

Z0

∂ Ẽy

∂ x̃
,

∂ H̃ x

∂ t̃
= c

Z0

∂ Ẽy

∂ z̃
, (1)

∂ Ẽy

∂ t̃
= cZ0

1

n2

(
∂ H̃ x

∂ z̃
− ∂ H̃ z

∂ x̃

)
,

whereH̃ z andH̃ x represent the dimensional magnetic fields in the plane whileẼy refers to
the perpendicular component of the electric field. We have also introduced the free-space
impedance,Z0=

√
µ0/ε0, and the vacuum speed of light,c= 1/

√
ε0µ0, whereε0 andµ0

represent the free-space permitivity and permeability, respectively. The index of refraction,
n(z, x), is related to the relative permitivity of the dielectric material asε= εr ε0= n2ε0.

Rather than working with the dimensional equations, we find it more convenient to work
with the non-dimensional form arrived at by introducing the new variables

x = x̃/λ, y = ỹ/λ, t = ct̃/λ = t̃ν.

Hereλ is the free-space wavelength of an electromagnetic field with frequencyν. The field
components are similarly normalized as

Hx = H̃ x, Hz = H̃ z, Ey = Z−1
0 Ẽy,



290 HESTHAVEN, DINESEN, AND LYNOV

yielding the non-dimensional TE equations

∂ Hz

∂t
= −∂Ey

∂x
,

∂ Hx

∂t
= ∂Ey

∂z
, (2)

∂Ey

∂t
= 1

n2

(
∂ Hx

∂z
− ∂ Hz

∂x

)
,

which we shall consider in what remains.
As the materials are considered to be non-magnetic and lossless the field components,

Hz, Hx, andEy, are subject to the boundary conditions

E1
y = E2

y, n̂× H1 = n̂× H2, n̂ · H1 = n̂ · H2, (3)

where the superscripts refer to the field components in two neighbouring layers while
n̂ signifies the unit vector normal to the interface. Hence, all field components can be
considered continuous, albeit not smooth, for this particular case.

In a typical scenario, the diffractive element is integrated with a laser such that the
incoming field is being fed to the element as a guided wave in a multi-layer plane waveguide.
As the incoming field we therefore use the fundamental mode of the unperturbed thin film
waveguide which may easily be found by semi-analytic means; see, e.g., [18].

3. THE NUMERICAL SCHEME

The construction of the spectral collocation multi-domain scheme for the time-domain
solution of Maxwell’s equations within a general diffractive optical element involves the
combination of a number of techniques. In the following we shall discuss in some detail
the individual elements of and the reasoning behind the complete multi-domain scheme for
the solution of Eq. (2) subject to the prescribed initial and boundary conditions.

3.1. Chebyshev Spectral Methods

The scheme is based on a Chebyshev collocation method. Due to their superior approx-
imation properties, these methods are widely used for the solution of partial differential
equations [17].

The Chebyshev polynomial of orderk is defined as

Tk(z) = cos(k cos−1 z),

where|z| ≤1. We will consider collocation methods, where theM + 1 collocation points are
chosen to be the Chebyshev–Gauss–Lobatto points appearing as the roots of the polynomial
(1− z2)T ′M(z), i.e.,

zi = −cos

(
i π

M

)
, 0≤ i ≤ M.

When applying a Chebyshev collocation method the function,f (z), is approximated by a
grid function, fi = f (zi ) where the grid-points are the Gauss–Lobatto points. We construct
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a globalM th order Chebyshev interpolant,IM , to obtain the approximation of the function

(IM f )(z) =
M∑

i=0

fi gi (z),

where the interpolating Chebyshev–Lagrange polynomials are given as

gi (z) = (1− z2)T ′M(z)(−1)i+1

ci M2(z− zi )
,

wherec0= cM = 2 andci = 1 for 1≤ i ≤M − 1.
To seek approximate solutions, (IM f )(z), to a partial differential equation we ask that the

equation is satisfied in a collocation sense, i.e., at the collocation points. Hence, we need
to obtain values of the spatial derivatives at the collocation points. This is accomplished
by approximating the continuous differential operator by a matrix operator with the entries
given as

Di j = g′j (zi ),

such that the derivative off at a collocation point,zi , is approximated as

d f

dz
(zi ) ≈ d(IM f )

dz
(zi ) =

N∑
j=0

Di j f (zj ),

and likewise for higher derivatives. For the explicit expressions of the entries of the matrix
operator and further details on collocation methods, we refer to [8].

The extension of this one-dimensional framework to a multi-dimensional setting is most
easily accomplished through the use of tensor products; e.g., given the function,f (z, x),
we construct the two-dimensional approximation

(IM,N f )(z, x) =
M∑

i=0

N∑
j=0

f (zi , xj )gi (z)gj (x),

where we have introduced the Chebyshev–Gauss–Lobatto grid,xj , alongx (see Fig. 1).
The advantage of this approach lies in the computation of derivatives through the use of
one-dimensional differentiation matrices and matrix–matrix products. However, the use of
tensor products also requires thatf (z, x) is defined on a rectangular grid, a restriction that
we shall overcome shortly by introducing a curvilinear representation.

To increase the robustness of the scheme we find it useful to introduce a very weak fil-
tering of the solution. We employ an exponential filter of the type

σi =
1, 0≤ i ≤ Mc

exp
[
−α
(

i−Mc
M−Mc

)γ ]
, Mc < i ≤ M,

(4)

whereMc is a cut-off mode number,γ is the order of the filter, andα=−ln εM with εM

being the machine accuracy. The filtering alongzmay conveniently be expressed as a matrix
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FIG. 2. Illustration of the mapping between physical coordinates, (z, x), and general curvilinear coordinates,
(ξ, η), required for the construction of the general multi-domain scheme.

operator,F , with the entries given as

Fi j = 2

cj M

M∑
k=0

σk

ck
Tk(zi )Tk(zj ),

and likewise for filtering alongx.

3.2. Maxwell’s Equations in Curvilinear Form

The first step towards a geometrically flexible spectral collocation scheme is to extend the
use of polynomial expansions to the general curvilinear quadrilateral domain. We assume
the existence of a smooth non-singular mapping function,9, relating the (z, x) coordinate
system to the general curvilinear coordinate system (ξ, η) as

ξ = ξ(z, x), η = η(z, x),

as illustrated in Fig. 2. We shall return to the actual specification and construction of the
smooth map,9, shortly.

Adapting this formulation for Eq. (2) yields the hyperbolic system

∂q
∂t
+ A(∇ξ)

∂q
∂ξ
+ A(∇η)

∂q
∂η
= 0, (5)

where we have the state vector,q= (Hz, Hx, Ey)
T . The general operator, A(m), in which

m= (mz, mx) represents the local metric, is given as

A(m) =

 0 0 nx

0 0 −nz

mxn−2 −mzn−2 0

 , (6)

where we recall that the scalarn refers to the local index of refraction. Locally, this operator
diagonalizes under the similarity transform, A(m)=S−1(m)3(m)S(m), where the diagonal
eigenvalue matrix,3(m), has the entries3(m)= |m|diag[−n−1, 0, n−1] corresponding to
the characteristic velocities of the waves counter-, non-, and co-propagating along the normal
vectorm with the local speed of light. We recall that|m| represents the length of the vector
m, such thatm= |m|(m̂z, m̂x).
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The diagonalizing matrices, S(m) and S−1(m), take the form

S(m) =

−m̂x m̂z −m̂x

m̂z m̂x m̂z

n−1 0 −n−1

 , S−1(m) = 1

2

−m̂x m̂z n

2m̂z 2m̂x 0

−m̂x m̂z −n

 ,

from which we obtain the characteristic variables

R= S−1(m)q=

 R1

R2

R3

 = 1

2

−m̂x Hz+ m̂zHx + nEy

2m̂zHz+ 2m̂x Hx

−m̂x Hz+ m̂zHx − nEy

 .

Aside from revealing information about the dynamics of the fields, the identification and
use of the characteristic variables plays, as we shall see shortly, an integral role in the
specification of the multi-domain scheme.

3.3. The Multi-Domain Formulation

We wish to solve Eq. (5) within a general computational domain,Ä ∈ R2, in the (z, x)-
plane. As we have briefly discussed, the most natural and computational efficient way of
applying polynomial expansions in several dimensions is through the use of tensor products.
This procedure, however, requires that the computational domain can be smoothly mapped
to the unit square. To overcome this limitation, we constructÄ usingK non-overlapping
general curvilinear quadrilaterals,Dk⊂R2, such thatÄ=⋃K

k=1Dk.
The advantages of such an approach, besides from providing the geometric flexibility,

are many. In particular in connection with spectral methods, the multi-domain framework
results in a lower total operation count and an increased allowable time-step while providing
a very natural data-decomposition, well suited for the implementation on contemporary
parallel computers as we shall discuss further in Subsection 4.4. We refer to [14, 7, 12] for
a thorough discussion of the advantages of using a multi-domain formulation when solving
wave-dominated problems.

Once we have split the global computational domain intoK sub-domains, we need to
construct the map,9: D→ I (see Fig. 2) whereI⊂R2 is the unit square, i.e.,I= [−1, 1]2.
At this point we have the Cartesian coordinates,(z, x)∈D, and the general curvilinear
coordinates,(ξ, η)∈ I, related through the map,(x, y)=9(ξ, η). To establish a one-to-one
correspondence between the unit square and the general quadrilateral, we construct the
local map for each sub-domain using transfinite blending functions [9]. We refer to [13]
for a thorough account of this procedure within the present context. Having constructed the
global map,9, we may compute the metric of the mapping and outward pointing normal
vectors at all points of the enclosing edges of the quadrilateral.

Within the multi-domain setting we must solveK independent problems in the individual
sub-domains. However, to obtain the global solution we must ensure that information is
passed between the sub-domains in a way consistent with the dynamics of the Maxwell
equations. In the particular scenario considered here, and illustrated in Fig. 1, we encounter
two different types of interfaces, requiring different techniques of patching.

The patching across boundaries of domains in regions of different material properties is
accomplished by using the physical conditions on the field components, Eq. (3), which are
enforced directly.
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For the patching of sub-domains of the same material properties we utilize the fact that
the system, Eq. (5), is strongly hyperbolic. Hence, it is only natural to transfer informa-
tion between the various sub-domains using the characteristic variables introduced in the
previous section.

The characteristic variables,R, are convected along the normal,n̂, with a speed given by
the diagonal elements of3(m). Hence, once the outward normal vector at every grid point
on the enclosing boundary of the sub-domain is known, as it is once the map,9, is con-
structed, we may uniquely determine for each point on the boundary which characteristics
are leaving the sub-domain and which are entering and thus need specification. Indeed, we
observe from the eigenvalues of A that whileR3 is always leaving the domain and therefore
need no boundary condition,R1 is always entering the computational domain and requires
specification to ensure well-posedness. Thus,R3, leaving a domain, supplies the sought after
boundary conditions forR1 in the neighbouring domain and conversely forR1 in the first
domain. For the non-propagatingR2 we simply use the average across the interface. Once
the characteristic variables have been adjusted, the physical fields are recovered through
the relation S(m)R= q. This procedure is applied along all interface points, including the
vertices where it is done dimension-by-dimension as described in [13]. Using this procedure
of patching hyperbolic systems, we arrive at the global solution at each time-step, and as we
shall see shortly, it is stable as well as accurate. Moreover, in a parallel setting the commun-
ication between the sub-domains involves only nearest neighbor interaction between edges.

3.4. Illumination and Outer Boundary Conditions

As we limit the attention to linear materials, it is natural to introduce a scattered field/total
field formulation such that the major part of the computation is performed with the total fields
and the incoming fields are prescribed along an enclosing contour. Outside of this contour
only the scattered fields remains and these now need to be terminated, i.e., we are faced
with the long standing problem of finding infinite space solutions on a finite computational
domain. The critical issue is how to construct appropriate boundary conditions that prevent
outgoing waves from being reflected from the artificial numerical boundaries, as such waves
may otherwise interact with the true solution and hence falsify the final result.

The introduction of the perfectly matched layer (PML) methods [3] has spawned sig-
nificant research into such methods. However, problems related to the lack of strong well-
posedness of the original PML equations have been exposed [1] for the two-dimensional
PML methods and a number of alternatives have recently appeared in the literature.

In [10] a well-posed PML scheme was introduced and shown to perform well in connec-
tion with the spectral collocation multi-domain modeling of scattering. We have chosen to
use a slightly modified version of that particular scheme given as

∂ Hz

∂t
= −∂Ey

∂x
− 2σx Hz− σx Px − µzHz,

∂ Hx

∂t
= ∂Ey

∂z
− 2σzHx − σzPz− µx Hx,

∂Ey

∂t
= 1

n2

(
∂ Hx

∂z
− ∂ Hz

∂x

)
− σ ′zQz+ σ ′x Qx − 2

n2
(µz+ µx)Ey, (7)

∂ Pz

∂t
= σzHx − µzPz,

∂Qz

∂t
= −σzQz− n−2Hx − µx Qz,

∂ Px

∂t
= σx Hz− µx Px,

∂Qx

∂t
= −σx Qx − n−2Hz− µzQx.
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Note that the additional degrees of freedom, making possible the perfectly matched layer
property, are introduced through a number of auxiliary fields, described through additional
ordinary differential equations, rather than an unphysical splitting of the electromagnetic
fields as in [3].

The modifications of the scheme in Eq. (7), as compared to the original scheme in [10],
lie in the adaptation to general dielectric media and, more significantly, a stabilization of the
scheme through the addition of the terms associated withµz andµx. This is done to stabilize
the unsplit PML scheme when subjected to spatially low frequency fields for which the
method is weakly unstable. This latter phenomenon is shared among all time-domain PML
methods and is related to a weak instability in the system of ordinary differential equations
describing the auxiliary variables. Similar techniques has been exploited to stabilize PML
schemes for advective acoustics [2].

The PML assumes a rectangular interface bounded by|z| ≤ z0 and |x| ≤ x0 and the
absorption profiles takes the polynomial form

σz(z) = Cz(|z| − z0)
p, σx(x) = Cx(|x| − x0)

p, (8)

where the constants,Cz andCx, are tunable for optimal performance. For simplicity we
also takeµz= σz andµx = σx in Eq. (7) although that need not be so.

In light of the problems associated with using PML methods for spatial low frequency
fields, as happens in a significant part of the scattered region due to the very accurate com-
putation of the total fields and little scattering, we have also considered using the matched
layer (ML) technique introduced within the context of computational electromagnetics in
[23]. This approach involves solving

∂ Hz

∂t
= −∂Ey

∂x
− (σz+ σx)Hz,

∂ Hx

∂t
= ∂Ey

∂z
− (σz+ σx)Hx, (9)

∂Ey

∂t
= 1

n2

(
∂ Hx

∂z
− ∂ Hz

∂x

)
− 1

n2
(σz+ σx)Ey,

within the absorbing layers. As for the PML method, the profiles,σz andσx, are of the form
in Eq. (8) within the layer while they vanish outside, i.e., in the total field region. For this
method to be comparable in performance to Eq. (7), however, it must be combined with the
use of a low-pass filter and a cubic stretching of the grid in the absorbing layer domains—
the idea being that as the waves propagate towards the outer boundary they are gradually
damped while, on the grid, becoming increasingly high frequency hence enhancing the
efficiency of the filter. A more detailed description can be found in [23]. As we shall see
shortly, despite its simplicity its performance is comparable to that of the PML scheme
except if very high accuracy is required.

3.5. Issues Related to Time-Stepping

We advance Maxwell’s equations using a low-storage 5-stage 4th order Runge–Kutta
scheme developed in [4]. Although it requires an extra step to complete the time step as
compared to the standard 4th order Runge–Kutta scheme, it has a slightly larger stability
region, ensuring that the total work remains about constant. However, only one storage level
is required for the implementation of the scheme.
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The time-step,1t , is chosen to obey the CFL-criteria as

1t ≤ CFL×
(

min
Ä

[
√

χ · χ ]
)−1

,

where we have defined the local vector,χ , as a measure of grid-distortion defined as

χ =
( |ξz|

1ξi
+ |ηz|

1η j
,
|ξx|
1ξi
+ |ηx|

1η j

)
,

where1ξi and1η j refer to the local grid size.
One of the well-known problems associated with the use of spectral collocation methods,

as compared to low-order finite difference methods, is theN−2-scaling of the time-step.
While one of the advantages of the multi-domain formulation is a significant relaxation of
this constraint it remains a problem. In [16] a mapping, having the effect of stretching the
grid near the boundaries of the domains with a resulting increased stable1t , was introduced.
The mapping is given as

z(ξ) = arcsin(αξ)

arcsinα
,

whereξ refers to the Chebyshev–Gauss–Lobatto grid. The effect of the mapping is to stretch
the grid such that forα approaching unity, the grid becomes increasingly equidistant.

However, the mapping is singular and hence introduces an error,ε, that can be controlled
by properly specifyingα as guided through the relation

ε =
(

1−√1− α2

α

)N

, (10)

yielding a direct relation betweenα, N, andα. The usual choice ofε is the machine accuracy,
i.e., the error introduced by the mapping can be neglected. However, for small values of
N this implies that the effect of the stretching is truly marginal [5]. A more natural choice
would seem to be thatε be on the order of the error of the approximation [15]. While this
leaves the total error unaffected by the mapping, an increased time-step could result.

To come to an understanding of how to specifyα under the above reasoning and what
effect it has on the1t , we recall from [16] that choosing

α = cos

(
π

N
j

)
, (11)

where j is here some constant, is appropriate for resolving a wave, sin(kπx), with the
maximum wavenumber given as

kmax= N

2
− j, (12)

using N grid points in the polynomial expansion, i.e.,j ¿ N/2 measures the number of
waves we are willing to sacrifice to increase the overall accuracy. The effect of using Eq. (11)
onε asN increases is seen directly by introducing Eq. (11) into Eq. (10) yielding the result

lim
N→∞

ε = e− j π ,
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i.e., fixing j destroys the spectral accuracy of the scheme. Hence, usingj = 1 as advocated
in [19] results in the error being bounded bye−π ' 0.04, thus questioning the value of using
a spectral method.

To understand the correct scaling ofj with N, let us recall that the leading error of
sin(kπx), when approximated with a Chebyshev expansion of order N, is given as

εS '
√

2

π N

(
eπk

2N

)N

≤
(

eπk

2N

)N

. (13)

For this to be accurate we must require that

eπk

2N
< 1⇒ k <

N

π
,

yielding the well known requirement ofπ points per wavelength for Chebyshev methods.
Using this as a guideline forj in Eq. (12) yields

j = N

2π
⇒ kmax' N

π
.

We immediately see that this choice implies thatε∼ exp(−N/2), i.e., the mapping error
vanishes at a spectral rate, consistent with the properties of the approximation. We also note
that whileε and j vary with N, α becomes a constant sinceα= cos(1/2) using Eq. (11).

While this choice ofα ensures that the mapping error does not dominate over the ap-
proximation error, it is sufficiently different from 0 that an effect on1t becomes important.
Indeed, if we assume that the minimum spacing of the grid is inversely proportional to1t
we obtain the relation

1tmap∼ α√
1− α2 arcsinα

1tCheb,

where1tCheb represents the time-step associated with the original unmapped Chebyshev–
Gauss–Lobatto grid and1tmapis the time-step for the mapped scheme. We note that forα >

0, 1tmap> 1tCheb. Indeed, for the choice ofα= cos(1/2) we have that1tmap' 21tCheb,
i.e., the time-step can be doubled without loss of accuracy or stability of the scheme. These
results have been confirmed through numerous tests and for marginally resolved problems
the use of the mapping is critical in obtaining the expected results.

At first, the above analysis seems to contradict the results of [5] in which it is advocated
thatα must scale withN to maintain spectral accuracy. In that work, however,ε is always
taken as the machine accuracy which is unnecessarily stringent. In the approach advocated
above we recall that the error of the mapping scales asε∼ exp(−N/2). Hence, when
ε∼ εM , with εM being the machine accuracy, the approach suggested in [5] should be
followed as that allows for further stretching of the grid asN increases. However, if we
takeεM ∼ 10−16 this implies thatN > 75 which is an irrelevant range for the vast majority
of spectral models and certainly for multi-domain schemes.

3.6. Near- and Farfield Calculations

As an important postprocessing step, we use a field equivalence principle to facilitate the
computation of near- and farfields outside of the computation domain [20].
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The basis for a two-dimensional version of the field equivalence principle is the introduc-
tion of a virtual contour on which equivalent charge and magnetic current distributions are
defined based on the magnetic and electric flux caused by the sources inside the enclosing
contour. The fields outside the contour may subsequently be calculated anywhere through
a convolution of the equivalent currents with the free-space Green’s function.

The field equivalence principle is employed in the frequency domain only, so in general it
is necessary to perform a Fourier transformation of the time-domain field components. We
are, however, mainly interested in stationary solutions of monochromatic fields obtained
after transients have died out. In this case we may directly recover the complex field phasors
from the time-domain fields at two times separated by one quarter of a period.

Introducing the equivalent magnetic,J̆s, and electric,M̆s, currents along the contour with
the outward pointing normal vector,n̂, as

J̆s = n̂× H̆s,

M̆s = −n̂× Ĕs,

whereH̆s andĔs are the magnetic and electric fields phasors along the virtual contour, one
can define a pair of vector potentials as

Ă = µ0

∫
s
J̆sG(r | r′) ds

F̆ = ε0

∫
s
M̆sG(r | r′) ds,

wherer is the observation point,r ′ is the source point, and the integration is taken along
the contour.

The two-dimensional free-space Green’s function,G(r | r′), is given as

G(r | r′) = j

4
H (2)

0 (k|r − r′|),

whereH (2)
0 is the zero-order Hankel function of the second kind,j =√−1, andk= 2π/λ

is the wavenumber.
The electric and magnetic fields phasors outside the virtual contour may now be rigorously

calculated anywhere through the vector potentials as

Ĕ = − j ω

(
Ă+ 1

k2
∇(∇ · Ă)

)
− 1

ε0
∇ × F̆,

(14)

H̆ = − j ω

(
F̆ + 1

k2
∇(∇ · F̆)

)
− 1

µ0
∇ × Ă.

These equations are valid everywhere and shall be used to compute the nearfield of the
surface-relief grating. However, for the computation of the farfield, significant computa-
tional simplifications can be made. At first, the Green’s function may be approximated
as

lim
k|r−r ′|→∞

G(r | r′) = j 3/2

√
8πk

e− jk|r−r′|

|r − r ′|1/2
' j 3/2

√
8πk

e− jk(r−r ′ cosψ)

r 1/2
,



SPECTRAL COLLOCATION TIME-DOMAIN METHODS 299

where|r− r′| is approximated asr for the amplitude factor while the phase term is approx-
imated asr − r ′ cosψ with ψ being the angle between the observation point vector,r, and
source point vector,r ′.

Utilizing these farfield approximations, the vector potentials take the form

Ă ≈ µ0 j 3/2e− jkr

√
8πkr

∫
s
J̆se

jkr ′ cosψ ds≡ µ0 j 3/2e− jkr

√
8πkr

N

(15)

F̆ ≈ ε0 j 3/2e− jkr

√
8πkr

∫
s
M̆se

jkr ′ cosψ ds≡ ε0 j 3/2e− jkr

√
8πkr

L.

It is clear that in the true farfield limit, it is only necessary to calculate the radiation integrals
L andN once for each observation angle,ψ , as the integrals have no explicit dependence
on r . The farfield components may subsequently be calculated anywhere by multiplying
the observation point dependent distance factors. In contrast, in the nearfield the integration
must be performed for every observation point, since the integrals depend directly on the
position of the source as well as the observation point.

A note should be made concerning the virtual contour. The calculation based on the free-
space Green’s function outlined above requires that the enclosing contour be situated in
free-space and that it is closed. On the other hand, our problem requires that the waveguide
extends to infinity in the direction of propagation to avoid reflections. The virtual contour
is therefore restricted to an aperture above the waveguide. As we shall demonstrate the fact
that the surface is not closed is of little significance when the aperture is sufficiently wide
compared to the modulation of the waveguide surface as the guided wave in the unperturbed
waveguide is non-radiating.

4. NUMERICAL EXPERIMENTS

Combining all of the elements described in the previous section into a general computa-
tional framework yields a computationally efficient, yet geometrically flexible scheme for
the modeling of waveguide phenomena. Moreover, the use of high-order schemes in space
as well as in time allows for the accurate modeling of electrically large waveguide structures
in a reliable and efficient manner.

In the following we shall discuss a number of test cases, validating the general framework
and illustrating the prospects for addressing more general types of waveguide problems.

4.1. The Planar Waveguide Problem

As a basic test of the overall accuracy of the scheme, we have done a number of compu-
tations of the plane waveguide problem. A typical problem is shown in Fig. 3 illustrating
a 6λ long waveguide where the core layer has a thickness ofd2= λ and an index of re-
fractionn2= 1.45, the cladding layers both haven1= n3= 1.4, while the thickness of the
top cladding layer isd1= λ andd3= 4λ. The total field region, in which the computation
is conducted, as well as the surrounding scattered field region with the absorbing layers is
shown in Fig. 3.

As a first test of the scheme we shall address the conservation of power in the compu-
tational domain in order to establish an optimum trade-off between power dissipation as a
result of the weak filtering applied at each time step and the robustness of the numerical
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FIG. 3. Illustration of plane waveguide test case. The grid shows the general layout with the high-index
waveguide just belowx= 0 andN= 16 modes in each domain. On the right is a snapshot of theHz component
at an arbitrary time illustrating the total field region as well as the surrounding scattered field region (marked by
an S).

scheme. We evaluate the power conservation by comparing the power of the incident wave
with the output of power below, above, and to the right of the waveguide.

As the initial condition, the exact solution is taken in the entire computational domain,
implying that in the PML domains where the scattered field formulation is used, a zero
field is initialised. The system is subsequently advanced 10 periods in time. The analysis is
performed for a resolution ofM = N= 20. Table I shows the relative power dissipation for
different orders,γ , of the filter, Eq. (4), which is used withMc= 0. We find that increasing
the order of the filter beyond 22 renders the algorithm unstable for the given time-step,
which corresponds to a CFL number of 3. This unstable behavior can be avoided if the
time-step is lowered; however, to reduce the stifness of the algorithm, we choose to apply
this very weak filtering. Also, as the wave is guided in thez-direction, the power output
perpendicular to the direction of propagation should be negligible as is indeed confirmed
by our computations, where we find that the power of the waves propagating through the
enclosing upper and lower boundaries are about 11 orders less than the power of the guided
wave. In what remains, we shall use a filtering of order 22 which at the same time ensures
stability of the scheme with a reasonable time-step and limits the power dissipation to a
negligible level.

Looking at the field components after the 10 periods of time advancement we measure the
globalL∞ error of the three field components. Table II shows the results, clearly illustrating

TABLE I

Relative Power Dissipation as a Function

of the Filtering Order, γ

γ Relative power loss

12 0.23
16 9.3E-3
20 4.7E-4
22 1.9E-4
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TABLE II

Error in the Computation of the Plane

Waveguide Solution att = 10

N Nppw 1t L∞(Hz) L∞(Hx) L∞(Ey)

12 4.3 3.1E-2 5.0E-2 3.6E-1 2.5E-1
16 5.7 2.1E-2 1.1E-3 8.5E-3 6.0E-3
20 7.1 1.4E-2 6.9E-6 4.8E-5 3.9E-5
24 8.5 1.1E-2 2.2E-6 1.5E-5 1.1E-5

the spectral convergence for increasing number of modes,N, in each sub-domain. One notes
in particular that about 7 points per wavelength,Nppw, in the waveguide are sufficient to
accurately advance the fields.

4.2. Absorbing Boundary Layers

Let us now turn to the issue of designing the absorbing boundary layers for maximum
absorption. To investigate this, we temporarily employ a total-field formulation in most
of the absorbing layers, however, maintaining the scattered field formulation in the left
absorbing layer, to facilitate the continuous feeding of the waveguide atz= 0. In this way
there is a sufficient amount of energy propagating in the absorbing layers to influence the
accuracy of the solution through reflections from the absorbing layers.

Using the grid shown in Fig. 4 withN= 20 in each domain it is ensured that the approxi-
mation error is small. As a reference solution we use the fields computed on a grid similar
to that in Fig. 4, however, extended toz= 20. Monitoring theL∞ error in the domains
with 10< z< 12 for a time sufficiently short that no reflections can reach these domains,
we find the errors to approximately be 5.2E-6, 1.0E-5, and 7.3E-6 for theHz, Hx, andEy

components, respectively, hence yielding a measure of the pure approximation error. This
computation is used in the subsequent analysis rather than the exact solution to remove the
effects of the approximation from the evaluation of the performance of the absorbing layers.

A series of calculations has been performed for cases using either the PML scheme,
Eq. (7) or the ML scheme, Eq. (9), while varying the thickness of the absorbing layers,L,
the orderp of the absorption profiles, and the constantsCx andCz. The best combination

FIG. 4. Grid for waveguide problem testing the efficiency of the absorbing layers.
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TABLE III

Optimum Parameters for the Absorbing Layers

and the Corresponding GlobalL∞ Errors

L∞ errors

Method p C L Hz Hx Ey

ML 4 0.03 2.0 3.6E-5 6.1E-5 5.0E-5
PML 3 0.0275 2.0 5.3E-6 1.9E-5 1.3E-5

for the present problem type in terms of global minimumL∞ errors are listed in Table III,
from which it is found that the PML results in the minimum error, yielding results only
slightly above the level of the approximation error. The ML scheme, on the other hand,
results in somewhat larger errors, although still acceptable.

4.3. Out-of-Plane Waveguide Couplers

Let us now consider a specific example of the generic structure shown in Fig. 1 in more
detail. Shown in Fig. 5 is the grid for this test case usingN= 20 grid points in each domain.
The waveguide structure is similar to the above, although the core is slightly thinner with a
thickness ofd2= 0.8λ. The thickness of the top-cladding layer is 1λ where it is unmodulated
and the surface relief is described by the perturbation profile

h(z) = Aexp

(
−
(

z− z0

w

)2)
sin(2πza0), (16)

where A is the amplitude,z0 is the center of the modulation,w is the width anda0

is the inverse modulation period. For the particular case shown in Fig. 5 we have used
A= 0.5, z0= 10, w= 4, anda0= 0.5.

FIG. 5. Illustration of an out-of-plane waveguide coupling test case. The core layer of the waveguides is right
belowx= 0 while the absorbing layers are not shown.
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FIG. 6. The Hz field component at t= 190.

As is clear from Fig. 5, the computation domain is chosen relatively wide as compared
to the width of the surface modulation. This is done to ensure that the virtual aperture
used in the subsequent near- and farfield calculations captures all of the radiation from the
surface-relief grating. The virtual aperture is placed atx= 2.

In Fig. 6 we show a snapshot of theHz component att = 190, clearly illustrating the
coupling of the waveguide energy into free-space waves as a consequence of the surface
modulation.

To further investigate the out-coupled light we employ the field equivalence principle
discussed in Subsection 3.6. As a way of validating the transformation as well as the
accuracy of the computation framework, we compare a directly computed nearfield along
the line x= 6 with that obtained through the transformation of the phasors alongx= 2.
The results are shown in Fig. 7, where the amplitude of theHz in its phasor representation
calculated both directly and using the field equivalence principle is plotted, confirming the

FIG. 7. Nearfield calculation using both direct calculation and calculation using field equivalence atx= 6.
Solid line, direct solution; dashed line, solution obtained with free-space integration.



304 HESTHAVEN, DINESEN, AND LYNOV

FIG. 8. θ -component of radiation integralL as a function of the observation angle,θ .

accuracy as well as the consistency of the different approaches. This also confirms that
the non-closedness of the virtual contour does not represent a source of errors as long as
the aperture is wide compared to the modulation of the waveguide surface.

As a final example, we calculate the farfield pattern based on the approximate expressions
in Eq. (15), yielding the results shown in Fig. 8 and illustrating the output power in an
arbitrary distance in the farfield as a function of the observation angle. The peaks reflects
the diffraction orders of the problem.

4.4. Parallelization Issues

As mentioned previously the multi-domain formulation is well suited for implementation
on parallel computers. We have parallelized the code on a cluster of IBM RS/6000 SP nodes
connected through a high performance switch with a bandwidth of 100 Mbits/s. The code is
written in Fortran 77 and has been parallelized using the message passing interface (MPI)
set of libraries. Figure 9 shows the speed-up factor as a function of the number of nodes
on which the execution is distributed. The test case consists of 440 domains. It is seen
that the parallelization speed-up is very reasonable with a speed-up of 6.1 for 8 processors

FIG. 9. Parallelization speed-up factors for a case employing 440 elements.
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in parallel. This efficient parallelization is due mainly to the fact that the exchange of
information between processors is limited to the fields on the borders of the subset of
domains distributed to the individual processors.

5. CONCLUDING REMARKS

We have presented a parallel spectral collocation time-domain method for the accurate and
efficient modeling of general waveguides with special attention being paid to the modeling
of waveguide couplers with a general surface-relief grating.

Through a number of computational tests we confirmed the accuracy and robustness
of the scheme for modeling wave propagation in thin film waveguides. Only 7–9 points
per wavelength are necessary to accurately evolve the wavetrains, thus making way for a
significant reduction in computational requirements as compared to more traditional low
order methods and an enhanced ability to model electrically very large problems. The
combination of the multi-domain formulation and smooth mappings yields a geometrically
flexible scheme that, as we have shown, is well suited for implementation on parallel
computers.

The specification of the complete scheme involves a detailed comparison of two different
types of absorbing boundary conditions, PML and ML, establishing that the PML method
is slightly more efficient for our purpose, and that the error introduced by using such an
absorbing boundary is of the order of the approximation. Moreover, we also discussed
using a singular grid-mapping, showing that it could significantly increase the maximum
allowable time-step without sacrificing the spectral convergence.

Combined with the use of the field equivalence principle for near- and farfield calculations,
the spectral collocation scheme provides a powerful tool for analyzing radiation from a large
class of diffractive optical elements.
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